CREPES: Cooperative RElative Pose Estimation System

Image credit: Unsplash

Abstract

Mutual localization plays a crucial role in multi-robot cooperation. CREPES, a novel system that focuses on six degrees of freedom (DOF) relative pose estimation for multi-robot systems, is proposed in this paper. CREPES has a compact hardware design using active infrared (IR) LEDs, an IR fish-eye camera, an ultra-wideband (UWB) module and an inertial measurement unit (IMU). By leveraging IR light communication, the system solves data association between visual detection and UWB ranging. Ranging measurements from the UWB and directional information from the camera offer relative 3-DOF position estimation. Combining the mutual relative position with neighbors and the gravity constraints provided by IMUs, we can estimate the 6-DOF relative pose from a single frame of sensor measurements. In addition, we design an estimator based on the error-state Kalman filter (ESKF) to enhance system accuracy and robustness. When multiple neighbors are available, a Pose Graph Optimization (PGO) algorithm is applied to further improve system accuracy. We conduct enormous experiments to demonstrate CREPES’ accuracy between robot pairs and a team of robots, as well as performance under challenging conditions.

Publication
2023 IEEE/RSJ International Conference on Intelligent Robots and Systems(ICRA 2023)
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Create your slides in Markdown - click the Slides button to check out the example.

Add the publication’s full text or supplementary notes here. You can use rich formatting such as including code, math, and images.